

Structures of Sideroxylonals from *Eucalyptus sideroxylon*

Hiroyuki SATOH, Hideo ETOH,* Naoharu WATANABE,

Hirokazu KAWAGISHI, Koshi ARAI,[†] and Kazuo INA

Department of Applied Biological Chemistry, Faculty of Agriculture,
Shizuoka University, 836 Ohya, Shizuoka 422

[†]Pharmaceutical Research Laboratories, Sapporo Breweries Ltd.,
10 Okatohme, Yaizu, Shizuoka 425

The structures of two novel isopentyl phloroglucinol dimers, designated as sideroxyxonals A and B were deduced on the basis of proton magnetic resonance, ^{13}C -nuclear magnetic resonance and mass spectral evidences.

As a result of the research on bio-active components from Eucalyptus sideroxylon, two novel isopentyl phloroglucinol dimers, designated as sideroxylonals A (1) and B (2), as well as macrocarpals A¹⁾ and B²⁾ were isolated. We wish to describe herein their structure elucidation.

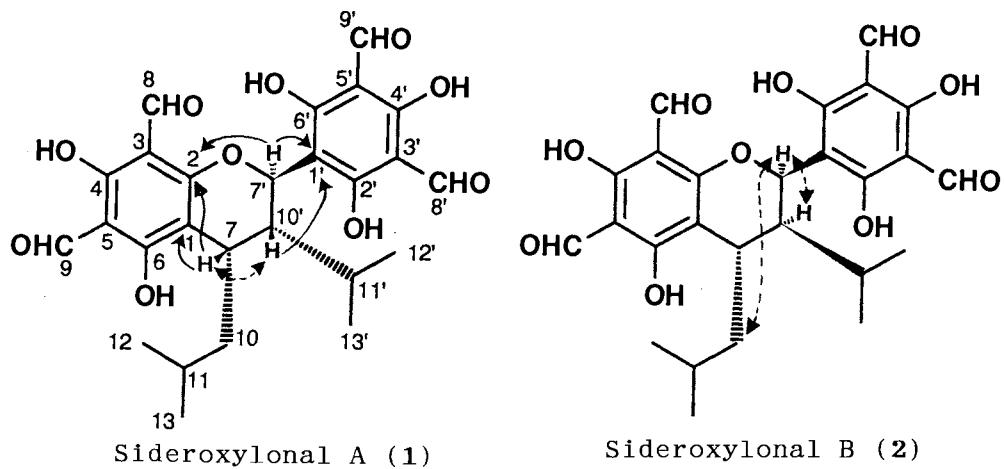


Fig. 1. Structures of sideroxyxonals A and B.

← COLOC → NOE

Successive column chromatography of the hexane soluble portion of methanol extract by silica gel, Sephadex LH-20 (MeOH), and silica gel (chloroform-acetic acid and then methanol) followed by either HPLC with an ODS column (methanol-water=40:3) or recrystallization from methanol, yielded compounds **1** and **2**.

Sideroxylonal A (**1**)⁵⁾ was isolated in 0.0012% yield as white amorphous powder of mp 193-195 °C, $[\alpha]_D^{25} \pm 0^\circ$ (c 1.0, $\text{CHCl}_3:\text{MeOH}=4:1$) and had the composition, $\text{C}_{26}\text{H}_{28}\text{O}_{10}$ [fab mass spectra: negative, 3-nitrobenzylalcohol (3-NBA) (matrix) m/z 499 $[\text{M}-\text{H}]^-$; positive, 3-NBA m/z 501 $[\text{M}+1]^+$; high resolution fab mass spectrum: m/z 501.1748 (-1.3 mmu) (Calcd for $\text{C}_{26}\text{H}_{29}\text{O}_{10}$)]. The UV data [$\lambda_{\text{max}}^{\text{EtOH}}$ nm (ϵ), 275 (53,000) and 341 (6000)] of **1** was very closely related to those reported for euglobals³⁾ isolated from Eucalyptus globulus, and indicated the presence of a similarly substituted phloroglucinol chromophore. This compound, like the other euglobals,⁴⁾ contains hydrogen-bonded conjugated carbonyl groups, as evidenced by their IR bands at 1643 cm^{-1} . ^1H NMR spectrum [δ 9.79 (1H, s), 10.11 (2H, br. s) and 10.17 (1H, s)] and ^{13}C NMR spectrum [δ 191.4, 191.8, 191.8, and 192.1]⁵⁾ showed that the carbonyl groups in sideroxylonal A (**1**) are four formyl ones. The EI MS of **1** showed the same fragmentation patterns as those of the other euglobals.⁴⁾ The above spectral data strongly suggested that **1** has the same aromatic part found in euglobals.³⁾ The fragment ion at m/z 251 ($\text{C}_{13}\text{H}_{15}\text{O}_5$) showed the retro-Diels Alder cleavage of the molecular ion. The ion at m/z 251 was suffered further losses of C_4H_8 to give one at m/z 195. The ^{13}C NMR spectrum of **1** exhibited twelve aromatic carbons. The high-field region of the ^1H NMR spectrum of **1** exhibited four methine protons [δ 5.95 (1H, d, $J=11.7 \text{ Hz}$), 3.38 (1H, dt, $J=3.7, 6.6 \text{ Hz}$), 2.40 (1H, ddd, $J=3.7, 8.1, 11.7 \text{ Hz}$) and 1.74 (1H, m)], four methyl group (δ 1.09, 1.04, 0.87, and 0.74, each 3H, d, $J=5.9, 7.3, 5.9$, and 6.6 Hz , respectively), and one methylene and one methine proton (δ 1.46, 3H, m). The saturated carbon region of ^{13}C NMR indicated the presence of five methines (δ 74.0, 42.9, 27.7, 27.3, and 25.1). The ^1H - ^1H COSY spectrum of

1 showed the correlations of between protons of a partial structure $(\text{CH}_3)_2\text{CH}-\text{CH}_2-\overset{\text{CH}-}{\text{CH}}-\text{O}-\overset{\text{CH}-}{\text{CH}}-\text{CH}(\text{CH}_3)_2$. To establish structure **1**, detailed analysis of COLOC was carried out. Significant long range correlations were observed as shown in Fig. 1. Stereochemistry of **1** was determined by the spin coupling constant (11.7 Hz) between H-7' and H-10' and the NOE between H-7 and H-10'.

Sideroxylonal B (**2**)⁶ was obtained in 0.0009% yield as white amorphous powder of mp 213-215 °C, $[\alpha]_D^{23} \pm 0^\circ$ (c 1.0, CHCl_3). The molecular formula of **2** was same as that of **1**, and all the other spectral data indicated the identity of the structures of both compounds except for the relative stereochemistry; H-7 and H-7' at δ 2.98 (1H, dd, $J=1.5, 10.3$ Hz) and δ 5.92 (1H, d, $J=1.5$ Hz), respectively, $J_{\text{H}-7'}$ and $J_{\text{H}-10'} = 1.5$ Hz, $J_{\text{H}-7}$ and $J_{\text{H}-10'} \approx 0$ Hz. Compound **2** is the C-10' epimer of **1** based on the NOE analyses.

Although sideroxylonals A (**1**) and B (**2**) are found to be racemates, based on the absence of the CD, even the crude extract of methanol was found to contain **1** and **2**. Thus, compounds **1** and **2** may be biogenetically formed by Diels-Alder type coupling reaction of pentenyl phloroglucinol dialdehyde precursors as proposed by Kozuka et al.³⁾

The minimum concentration giving fifty percent growth inhibition for sideroxylonals A (**1**) and B (**2**) were 62.5 and 62.5 $\mu\text{g}/\text{ml}$ against HeLa S-3 cells, respectively. Compounds **1** and **2** have also anti-bacterial activity, against Gram-positive bacteria such as Staphylococcus aureus and Bacillus subtilis at 3.9 and 7.8, and 3.9 and 7.8 $\mu\text{g}/\text{disk}$ ($\phi 6$ mm paper disk), respectively. Furthermore, **1** and **2** showed aldose reductase inhibitor activity at 1.25 and 2.47 μM (IC_{50}),⁷⁾ respectively.

We thank Mr. T. Okajima and Mr. Y. Nagase of Nagoya Higashiyama Park for supplying the leaves of E. sideroxylon.

References

- 1) M. Murata, Y. Yamakoshi, S. Homma, K. Aida, K. Hori, and Y. Ohashi, *Agric. Biol. Chem.*, 54, 3221 (1990).
- 2) M. Nishizawa, M. Emura, H. Yamada, and N. Hamanaka, 63rd National

Meeting of the Chemical Society of Japan, Osaka, March 1992, Abstr. No. II, 2E627, p. 1813.

- 3) M. Kozuka, T. Sawada, F. Kasahara, E. Mizuta, T. Amano, T. Komiya, and M. Goto, *Chem. Pharm. Bull.*, 30, 1952 (1982).
- 4) M. Kozuka, T. Sawada, E. Mizuta, F. Kasahara, T. Amano, T. Komiya, and M. Goto, *Chem. Pharm. Bull.*, 30, 1964 (1982).
- 5) 1: ^1H NMR (400 MHz, $\text{CDCl}_3:\text{CD}_3\text{OD}=4:1$) δ 0.74 (3H, d, $J=6.6$ Hz, 12' or 13'-H), 0.87 (3H, d, $J=5.9$ Hz, 12 or 13-H), 1.04 (3H, d, $J=7.3$ Hz, 12 or 13'-H), 1.09 (3H, d, $J=5.9$ Hz, 12 or 13-H), 1.46 (3H, m, 10 and 11-H), 1.74 (1H, m, 11'-H), 2.40 (1H, ddd, $J=3.7, 8.8, 11.7$ Hz, 10'-H), 3.38 (1H, dt, $J=3.7, 6.6$ Hz, 7-H), 5.95 (1H, d, $J=11.7$ Hz, 7'-H), 9.79 (1H, s, 8-H), 10.11 (2H, br.s, 8' and 9'-H), 10.17 (1H, s, 9-H). ^{13}C NMR (100 MHz, $\text{CDCl}_3:\text{CD}_3\text{OD}$) δ 20.5 ($\text{C}_{12'}$ or $13'$), 21.2 (C_{12} or 13), 21.6 ($\text{C}_{12'}$ or $13'$), 24.2 (C_{12} or 13), 25.1 (C_{11}), 27.3 (C_7), 27.7 ($\text{C}_{11'}$), 38.4 (C_{10}), 42.9 ($\text{C}_{10'}$), 74.0 ($\text{C}_{7'}$), 103.2 (C_5), 103.9 (C_3), 104.6 (C_3 and 5'), 106.5 (C_1), 108.9 (C_1), 164.9 (C_2), 166.7 (C_6 and 2' or 6'), 167.5 (C_4), 168.5 ($\text{C}_{4'}$ and 2' or 6'), 191.4 (C_9), 191.8 ($\text{C}_{8'}$ and 9'), 192.1 (C_8).
- 6) 2: ^1H NMR (400 MHz, CDCl_3) δ 0.74 (3H, d, $J=6.6$ Hz, 12' or 13'-H), 0.95 (3H, d, $J=6.6$ Hz, 12' or 13'-H), 0.99 (3H, d, $J=6.6$ Hz, 12 or 13-H), 1.09 (3H, d, $J=6.6$ Hz, 12 or 13-H), 1.53 (1H, ddd, $J=2.2, 10.3, 13.2$ Hz, 10a-H), 1.66 (1H, ddd, $J=2.2, 10.3, 13.2$ Hz, 10b-H), 1.74 (1H, m, 11-H), 1.97 (1H, m, 11'-H), 2.02 (1H, dd, $J=1.5, 2.2$ Hz, 10'-H), 2.98 (1H, dd, $J=1.5, 10.3$ Hz, 7-H), 5.92 (1H, d, $J=1.5$ Hz, 7'-H), 8.60 (1H, s, 2' or 6'-OH), 10.03 (1H, s, 8-H), 10.17 (1H, s, 8'-H), 10.20 (1H, s, 9'-H), 10.24 (1H, s, 9-H), 13.38 (1H, s, 4-OH), 13.53 (1H, s, 6-OH), 13.56 (1H, s, 4'-OH), 13.59 (1H, s, 2' or 6'-OH). ^{13}C NMR (100 MHz, CDCl_3) δ 19.7 ($\text{C}_{12'}$ or $13'$), 21.0 (C_{12} or 13), 23.8 ($\text{C}_{12'}$ or $13'$), 24.2 (C_{12} or 13), 25.6 (C_{11}), 26.5 ($\text{C}_{11'}$), 26.7 (C_7), 42.0 (C_{10}), 44.7 ($\text{C}_{10'}$), 77.7 ($\text{C}_{7'}$), 100.6 (C_1), 103.6 (C_3), 104.1 ($\text{C}_{3'}$ or 5'), 104.2 ($\text{C}_{3'}$ or 5'), 105.3 (C_5), 108.3 (C_1), 160.8 (C_2), 165.7 ($\text{C}_{2'}$ or 6'), 167.3 ($\text{C}_{2'}$ or 6'), 167.6 (C_4), 168.9 ($\text{C}_{4'}$), 169.6 (C_6), 190.2 (C_8), 192.1 ($\text{C}_{8'}$), 192.3 (C_9), 192.4 (C_9').
- 7) S. Hayman and J. H. Kinoshita, *J. Biol. Chem.*, 240, 877 (1965).

(Received June 24, 1992)